Hydraulic Conductivity Imaging from 3-D Transient Hydraulic Tomography at Several Pumping/Observation Densities

نویسندگان

  • Michael Cardiff
  • Warren Barrash
  • Peter K. Kitanidis
چکیده

[1] 3-D Hydraulic tomography (3-D HT) is a method for aquifer characterization whereby the 3-D spatial distribution of aquifer flow parameters (primarily hydraulic conductivity, K) is estimated by joint inversion of head change data from multiple partially penetrating pumping tests. While performance of 3-D HT has been studied extensively in numerical experiments, few field studies have demonstrated the real-world performance of 3-D HT. Here we report on a 3-D transient hydraulic tomography (3-D THT) field experiment at the Boise Hydrogeophysical Research Site which is different from prior approaches in that it represents a ‘‘baseline’’ analysis of 3-D THT performance using only a single arrangement of a central pumping well and five observation wells with nearly complete pumping and observation coverage at 1 m intervals. We jointly analyze all pumping tests using a geostatistical approach based on the quasi-linear estimator of Kitanidis (1995). We reanalyze the system after progressively removing pumping and/or observation intervals; significant progressive loss of information about heterogeneity is quantified as reduced variance of the K field overall, reduced correlation with slug test K estimates at wells, and reduced ability to accurately predict independent pumping tests. We verify that imaging accuracy is strongly improved by pumping and observational densities comparable to the aquifer heterogeneity geostatistical correlation lengths. Discrepancies between K profiles at wells, as obtained from HT and slug tests, are greatest at the tops and bottoms of wells where HT observation coverage was lacking.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of aquifer heterogeneity using transient hydraulic tomography

[1] Hydraulic tomography is a cost-effective technique for characterizing the heterogeneity of hydraulic parameters in the subsurface. During hydraulic tomography surveys a large number of hydraulic heads (i.e., aquifer responses) are collected from a series of pumping or injection tests in an aquifer. These responses are then used to interpret the spatial distribution of hydraulic parameters o...

متن کامل

A field assessment of the value of steady shape hydraulic tomography for characterization of aquifer heterogeneities

[1] Hydraulic tomography is a promising approach for obtaining information on variations in hydraulic conductivity on the scale of relevance for contaminant transport investigations. This approach involves performing a series of pumping tests in a format similar to tomography. We present a field-scale assessment of hydraulic tomography in a porous aquifer, with an emphasis on the steady shape a...

متن کامل

Steady shape analysis of tomographic pumping tests for characterization of aquifer heterogeneities

[1] Hydraulic tomography, a procedure involving the performance of a suite of pumping tests in a tomographic format, provides information about variations in hydraulic conductivity at a level of detail not obtainable with traditional well tests. However, analysis of transient data from such a suite of pumping tests represents a substantial computational burden. Although steady state responses c...

متن کامل

Hydraulic tomography in fractured granite: Mizunami Underground Research site, Japan

[1] Two large-scale cross-hole pumping tests were conducted at depths of 191–226 m and 662–706 m in deep boreholes at the Mizunami Underground Research Laboratory (MIU) construction site in central Japan. During these two tests, induced groundwater responses were monitored at many observation intervals at various depths in different boreholes at the site. We analyze the two cross-hole pumping t...

متن کامل

Hydraulic Tomography: Continuity and Discontinuity of High-K and Low-K Zones.

Hydraulic tomography is an emerging field and modeling method that provides a continuous hydraulic conductivity (K) distribution for an investigated region. Characterization approaches that rely on interpolation between one-dimensional (1D) profiles have limited ability to accurately identify high-K channels, juxtapositions of lenses with high K contrast, and breaches in layers or channels betw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013